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Abstract

A systematic procedure for constructing semi-discrete families of 2m-1 order accurate, 2m
order dissipative, variation diminishing, 2m+1 point band width, conservation form approxima-
tions to scalar ccnservation laws is presented. Here m is any integer between 2 and 8. Simple
first order forward time discretization, used together with any of these approximations to the
space derivatives, also results in a fully discrete, variation diminishing algorithm. These schemes
all use simple flux limiters, without which each of these fully discrete algorithms is even linearly
unstable. Extensions to systems, using a nonlinear field-by-field decomposition are presented, and
shown to have many of the same properties as in the scalar case, For linear systems, these non-
linear approximations are variation diminishing, and hence convergent. A new and general cri-
terion for approximations to be variation diminishing is also given. Finally, numerical experiments

using some of these algorithms are presented.



Introduction

Recently there has been an enormous amount of activity related to the construction and
analysis of "high resolution” schemes approximating hyperbolic systems of conservation laws.
Some samples of the successful consequences of this activity can be found in the proceedings of
the sixth AIAA Computational Fluid Dynamics Conference (3], [17], {31]. Extensive bibliogra-
phies can also be found in these papers.

Our aim here is to extend the use of these methods by making them even more accurate.
We shall give a systematic procedure for constructing semi-discrete approximations to scalar con-
servation laws. Except for isolated critical parts, these schemes will have 2m-1 order accuracy, 2m
order dissipation, and a bandwidth using 2m+1 points, for m any integer between two and eight.
They are in conservation form and TVD - the variation of the discrete solution is non-increasing in
tme. Hence, nc sgirious osdllations are possible.

The high resolution schemes constructed earlier [13], [21], [28] use five points (m = 2),
and have second order accuracy. Some of these were proven to satisfy a single entropy inequality
and hence to be convergeat when f(q) in (1.1) below is convex {20], [21]. It is possible that the
piecewise parabolic method of Woodward and Colella (7], is third order accurate, and shares some
of the properties discussed here when m = 2.

In a parallel work [4], we shall extend the construction below for m = 2, in order to
approximate systems of conservation laws in multi-dimensions, using triangle-based algorithms.
That work stresses the computational aspects of the algorithms, especally as they relate to the
Euler equations of compressible gas dynamics.

Conventional schemes such as Lax-Wendroff even with an entropy fix [16] seem to lack a
variation bound, although the convergence of this method for scalar convex f(¢) can now be

proved (DiPerna, private communication). From a practical point of view, this lack of a variation



bound seems to lead to a lack of robustness when computing complex flows with strong shock

waves and steep gradients.

Another drawback of most finite-difference schemes is that discontinuities are approximated
by discrete transitions, that when narrow, usually overshoot or undershoot, or when monotone,
usually spread the discontinuity over many grid points.

Upwind schemes have been designed and used over the years, largely because of their suc-
cess in treating this difficulty. Those based on solving the Riemann problem either exactly
Godunov’s method [9] or approximately, e.g. (Osher’s [18], or Roe's [23] with an entropy fix [24],
(4]), have been extremely successful, especially when put in a second-order accurate, high resolu-
tion framework, e.g. [3],(17], [31].

We should particularly mention the early investigations of van Leer [28], [29). There he
introduced the concepts of flux limiters, and higher order Riemann solvers. Recently Harten [13],
using an argument also used in [1] and elsewhere, obtained sufficient conditions which he showed
to be compatible with second order accuracy, and which guarantee that a scalar one-dimensional
approximation is TVD - total variation diminishing. He constructed a scheme having that pro-
perty and formally extended it to systems, using a field-by- field limiter, and Roe’s decomposition.

We would also like to mention the work of Boris and Book {34)], and Zalesak [32], concern-
ing FCT schemes. They used flux limiters to supress oscillations in their schemes.

Harten’s construction in [13] was done first for a fully discrete, explidt in time approxima-
tion. P. Sweby [26] has investigated the properties of various limiters in this context. We shall
not use Sweby’s ideas here since we seek higher order accuracy, and his symmetry restriction

would make our approximations only second order accurate in the semi-discrete context.

We shall use the now-introduced term “high resolution scheme” to mean a formal extension

to systems via a field-by-field decomposition, of a scalar, higher than first order accurate, variation



diminishing scheme. These schemes do not, in general, satisfy the entropy condition - e.g. expan-
sion shocks exist as stable solutions of high resolution schemes based on Roe’s (unmodified)
scheme. In [21] we used Csher’s decomposition and certain limiters to prove that limit solutions
of a class of second order accurate high resolution schemes do satisfy the entropy condition for
hyperbolic systems of conservation laws. We also—proved convergence of another class of high
resolution approximations to scalar convex conservation laws in [20] as well as in [21]. We believe
that the ideas concerning the entropy condition in these two papers can be extended to the high
order accurate schemes constructed in the following sections, but we do not attempt this here.

The interested reader might also consider the remarks on entropy fixes in [4], {19] and [16].

The high-order accurate TVD schemes are first obtained here for semi-discrete (continuous
in time) approximations, and can thus serve as a guideline for a wide variety of time discretiza-
tions, both implicit and explicit. See [2] for effident implicit calculations approximating Euler’s
equations in transonic and supersonic aeronautics. TVD schemes also have a certain diagonal
dominance that is very useful in implict methods 2], [12],

An interesting and useful fact concerning time discretization is the following (mentioned in
Theorems (3.1) and (3.2) below). All of the semi-discrete approximations constructed below are
unconditionally (even linearly) unstable when (a) they are used together with simple first order
accurate forward Euler time discretizations, and (b) the flux limiters are removed. However, they
are all conditionally stable when the limiters, which enforce the variation bound, are kept. Thus,
although the limiters might not act at all on a resulting steady state solution, they act non-linearly
during transient calculations to enforce the variation bound. This elementary time differencing is

sometimes useful, e.g. when steady state caiculations on coarse grids are to be obtained simply.

Goodman and Leveque have recently shown [10] that two space dimensional scalar approxi-

matons cannot be TVD and still be more than first order accurate, given that the assodated flux



functions are reasonably smooth. Nevertheless two dimensional schemes based on dimension by
dimension TVD differencing have worked quite well, even for complex configurations with very
strong shocks. See e.g. (3], {5], [7]. In particular, it seems that our remark in the previous para-
graph about conditional stability of Euler forward time discretization is also experimentally valid
here. Perhaps a more sophisticated, scheme dependent, notion of variation is needed for the
theory in several space dimensions.

The format of this paper is as follows. In section I, we review the relevant theory of weak
solutions of conservation laws and their approximations. In section II, we exemplify our general
theory by constructing families of second and third order accurate TVD schemes using five points,
In section III, we perform the general construction for scalar conservation laws and state
Theorems (3.1) and (3.2) which contain the main results of this paper. In section IV we prove the
theorers. In section V we obtain an apparently new and general criterion for an approximation
to be TVD, which we hope will be useful. In section VI we extend our construction to high reso-
lution schemes approximating systems. Section VII contains some numerical evidence demonstrat-

ing the utility of these methods. Many more experimental results are given in [5].



1. Review of Theory of Weak Solutions and their Approximations

We shall consider numerical approximations to the initial value problem for nonlinear hyper-

bolic systems of conservation laws.

9 . 3= -
o T R/ @=01>0-1s3<1 (1.1)

with periodic boundary conditions:

q(x+1,) = q(x,1),
given initial conditions ¢(x,0).

Here q(x,f) is an m-vector of unknowns, and the flux function f(q) is vector-valued, hav-
ing m components. The system is hyperbolic when the Jacobian matrix has real eigenvalues.

It is well-known that solutions of (1.1) may develop discontinuities in finite time, even when
the initial data are smooth. Bacause of this, we seek a weak solution of (1.1).

These weak solutions are not necessarily unique. For physical reasons, the limit of the
viscous equation, as viscosity tends to zero is sousht. This leads to an infinite family of inequali-
ties in the scalar case which when satisfied by so-called "entropy” solutions to (1.1) yield well-
posedness in L! of the evolution problem. This result is due to Kruzkov [15].

For systems of equations, Lax has defined an entropy inequality using an entropy function
[35]. The entropy inequality satisfied by "entropy” solutions to systems has an important
geometric consequence concerning admissible discontinuities.

This theory is quite well developed and often reviewed - see e.g. [19], section II. One new
result is the folloving; in the scalar convex case, a single entropy inequality is equivalent to the
required infinite number, if the solution is of bounded variation. (See {8).) This fact was crucal

to the convergence results in [20] and [21].



Next we consider a semi-discrete, method of lines, approximation to (1.1). We break the

interval (—1,1) into subintervals:

I = (=3 S 1S (+)As)

j = 0!111-'-71N, With (2N+1)AI =2

Let x, = jAx, be the center of each interval [;, with end points X LKL
72

Define the step function for each ¢ > 0, as

Q.u(x!t) = Qj(’)’
for x €1,

The initial data is discretized via the averaging operator T,,,
T, q(x,0) = _Al-.x- flqo(s,O)d.' = g;(0), forx € I,
J
For any step function, we define the difference operators

Ay, = i(?/ﬁ'?/)

1
A method of lines, conservation form, discretization of (1.1), is a system of differential
equations
24 +D.f 1 =0,=0x1..2N. (1.2)

-L
=3

QA(xvo) = T&Q(I,O) forx € Ij



Here, the pumerical flux defined by:

7 =gy - Gy-ids (1.3)

2
for k=1, isa Lipschitz continuous function of its arguments, satisfying the consistency condi-

tion:
7qgs-d) = @)
It is well known that bounded a.c. limits as &x =0, of
weak solutions of (1.1). This does not necessarily imaply that limit solutions will satisfy any of the
trictions on the aumerical flux are required.

i entropy conditions. Some res
flux functions known t0 yield convergent approximations
is the class of "E’

approximate solutions converge 10

The most general class of scalar

whose limit solutions will satisfy all entropy

fluxes, introduced in [18].

A consistent scheme whose numerical

conditions, for general scalar f(q)

flux h , satisfies
/7

(1.4)

sgn (41'41—1)["1_L"f(4)] =0
2

for all g between dj-1 and q;s issaidtobeanEﬂux.

equivalent definitions are given in (18] and 2Nn.

are at most first order

Other
accurate {18]. We shall use three point

Unfortunately these schemes

E sdxemuasb\ﬁldingblocksforourtﬁ

gher order accurate TVD schemes described in the next

e already done this to get convergent, second order TVD

ing convex scalar conservation Jaws in [20}, and (21).

sections. We hav

Examples of three-point E schemes include thxe_e-poim monotone schemes,



Osher’s [33), Godunov's [9] (which is canonical - see [18]), or entropy fixes of Roe's scheme {24].

These are de“ned again at the end of this section.

Together with an entropy inequality, a key estimate involved in most convergence proofs is a

bound on the variation. For any fixed ¢ = 0, the x variation of scalar Q,,(x,t) is defined as

B(QA:) = ; ’A+qjl

If we can write for every

A, f/-L =-C,. 8.4 +D Ay (1.5a)
2 2 2
el =20 (1.5b)
2
D ,=0 (1.5¢)
"1

then it is easy to show, [21], using an argument of [25), that forr, = t, = 0.

B(Q4,(st,)) = B(Qua, (1) (1.6)
Harten in [13], pointed out for explicit methods, that this decomposition could be obtained

for schemes which are higher than first order accurate. See also earlier work by van Leer (28]. In
section V we obtain a more general criterion than (1.5), guaranteeing that (1.6) is valid. We shall
use criterion (1.5) here to get very high order accurate, TVD schemes of the type

a - - -—
) q=-4, f;_% = I%A*q, Dj_%A-q] (1.7a)
with
C/*%— = C(@em - - - 19-me) =0 (1.7v)
D , =D(Qemis - G-m) =0 (1.7¢)

/..

o

which are 2m—1 order accurate, except at isolated critical points, for 2 s m < 8.



In addition to (1.6) we have a maximum principle for (1.7)

mkin 92.(0)sq() s max 1.(0), (1.8
for each j andall r 2 0, [21].

Moreover, in [21], we also showed a limit on the possible accuracy of approximations of type
(1.17), for m = 2. A glance at the proof of that Lemma (2.3) shows that the result is also valid
for general m, namely:

Approximation (1.7) is at most first order accurate at nonsonic critical points of ¢, i.e.
points § at which £(3) # 0 = g,.

In spite of this local degeneracy, higher order accuracy, combined with TVD does improve
performance, even when discontinuities are present. This is shown numerically in ref (5] and else-
where.

As promised, we now present several useful three-point E fluxes.
Engquist-Osher

hED (9/,9)-1) = qumin(f'(s).o)d.l (1.9
+ [ max(f (5),0)ds + 10)
Godunov

hG(qj'q]—l) = min f(q), if ¢,-, S g, (1.10)

]-LIQI'!

= max f(q), if ¢-. > ¢
q}-lthqI \ !

Roe with entropy fix, approximating a convex f(g) i.e., /" = 0 with f'(¢) = 0 at a single

sonic point ¢. Define



A_
M(@-0) = 2(1ta) + i) - I—A_Lf;j’fl’u,]

qj—l < q.< qj)
then take any Lipschitz function so that:

LUCTPRES )

See e.g. [4], [24], for various fixes of this type.

.10 -

(1-11)



II. Second and Third Order Accurate TVD Schemes

Which Use a Five-Point Module

We begin by exemplifying our general theory using a very important and convenient class of
schemes. We shall approximate the scalar conservation law by a family of five point, semi-

discrete method of lines, and TVD approximations.

Let h(q).,,q;) be the numerical flux corresponding to a three- point E scheme. Next we

define
4. L = h(q).1,9) ~ flq)) (2.1a)
. % = flqy+1) = b(gj+1,9)) (2.1b)
We can then write

Mayeia) = 5 [flae0) + @) - %[ L *.}
2
These new quantities df~ and df" denote the difference in flux across the waves with negative
and positive velocities respectively in the interval under consideration. The subscript Jol

denotes the interface between two cells whose centroids are denoted by grid points with subscripts

j and j+1 respectively. Thus ajt;‘; , denotes the difference (taken from right to left) in flux
2

across all the positive (forward) breaking waves at the cell interface Jo it etc.

[ST0

A general semi-discrete conservation form approximation to (1.1) can be given as

‘q, $———=0 (2.2)



Here the quantity f is the representative for numerical flux.
With this notation the numerical flux of one new family of TVD schemes can be represented
by

23) } oy = @) aldin)® - (Gma)d@, )O
2

+L
2

- (%—a)(ar;%)@ + ald ),

for 0<as%.

The superscripts shown over the df denote flux-limited values of df, and are computed as

follows:
a_ [ ’
(2.4a) (@32)" = min mod |dffzy, b d.
L - 2
(2.4b) [d;;L “ = min mod &1 b
2 L 2° J
(2.40) [ay'/:_l_](o)aminmod [ay;L,bdf;*_L]
2 2 2
(2.4d) [ay;*_L]"” = min mod [d;"_L,b ay;:l]
2 2 2
In the above, the operator "min mod” is defined by:
(2.5) min mod [x,y] = (sgn x) max(0,min|x|,y sgn x)

(see e.g. {26]), and b is a "compression” parameter chosen in the range

-12-



1

1<bsl+—2;=b_,. (2.6)

The case a = 0 also yields a TVD scheme, but this one is not time dissipative, so steady state
solutions are difficult to obtain. We recommend that a be positive in all applications. The dissi-
pation in our general algorithm is an increasing function of a.

The non-TVD or unlimited forms of the schemes in the new family can be obtained by
replacing the (df)v) terms appearing in (2.3) with the corresponding unlimited df values. The

truncation error of the unlimited form (up to second order) is given by:

TE = ($-a)(@s)? 1) eX)

It is interesting to note that 7E is independent of the particular E-scheme used, i.e. independent
of h.

Particular schemes in the new family may be chosen by picking various values for the param-
eter a. Some special cases are summarized in Table 2.1. The TE shcwn in the last column
corresponds to the unlimited forms. The names given to the TVD schemes are based on the
names used in the literature, e.g. [29), for the corresponding unlimited schemes.

Value of a | Name of TVD Scheme by 2nd order TE

Ve Third-Order 4 0 ,

12 Fully Upwind 2 | -13(Ax)? -f; f(w)
’ =Loaa2 2

1/4 Fromm’s 3 3 (Ax) 3§3 f()
. Lanz 22

1/8‘ Low TE second-order 5 24(Ax) 631:3 Sfu)
lianz 8

0 Central ® 61(Ax) o f(w)
= 1 97

13 No Name 2 | 8 I fw)

Table 2.1 Particular Cases of New Family of TVD Schemes

..13.



Semi-discrete notions of TVD schemes only show that, when a suitable time discretization is
chosen, the overall algorithm is TVD, hence has a convergent subsequence as Az - 0. See e.g.

[21). There is always a CFL restriction on explicit schemes. For simplicity, we consider the expli-
dt scheme given by forward Euler time discretization:

-7,
-l 0 j-&-i j..,-_
qa - g, 3 2 -9 (2.8)

This is only first order accurate in time.

As part of a general result Theorem (3.2), it follows that the unlimited versions of (2.8) are
all unstable for any CFL number \ = At

Ar However, Table (2.2) gives stable time steps for the
flux-limited versions for b = b_,..

The general condition for (2-8) to be TVD is:

@-:1-#:1
A Ty TRl da ey 2.9
Ax | A.q, 1+da = (2.92)

and for general b itis

-, —df
Ar) 777 A 1 2.9b
Ax A.q 1 (2.9b)

1 1+a+b(5-—a)

.14 -



AL
Value of a | by, | |A8]-ZZ /73
Ax A.q ax
6 a 25
172 2 23
14 3 172
1/8 5 13
0 ®© 0
173 s 47

TABLE 2.2. Stable Time Steps for This New Class of TVD Schemes.

In equations (2.4a) and (2.4b) the flux-limited values of df are defined. This value is com-
puted in some interval by comparirg the original unlimited value with its neighboring value, after
that neighbor has been multiplied by the "compression” parameter b. Assuming that the two
values being compared are of the same sign, the “min mod" operator chooses the one whose abso-
lute value is the smallest. If b > 1, the flux-limited value returned most often will be the unlim-
ited value itself. Thus, for most grid points (away from high second-gradient regions where the
unlimited value of slope df can be much greater than the unlimited value of the neighboring
slope), the TVD scheme is identical to the corresponding unlimited scheme. (Having a larger
value of b enhances this property.) At critical points of the fluxes, the neighboring values of df
can be of opposite sign. There, the “min mod” operator returns the value zero. Thus, away from
maxima, minima, and points of discontinuity, the TVD scheme reduces to its corresponding unlim-
ited scheme.

We next present a class of schemes having the same five-point band width and which are all
third-order accurate in their unlimited versions. However, the flux limiting is a bit more far-
reaching than in the a class defined above. This may cause a slight deterioration of accuracy

when we use a coarse grid to approximate solutions having many critical points.

.15 .-



The flux is defined by:

fj*% = h(g).1,q)) = (le--o-a)(ay;%)m
- (-%--23)(4‘;; : )
+ (Fr-B)ar D
- (=P )"
+ (%-23)@; %)«n

1 (=1)
Herewetake 0 <B = % Again,

ence, but TVD scheme.

The flux-limited values of df are defined through:

—

(df;

- )*) = min mod |df”

hWI
kRS 3

roj

(ay;- —)(01 = min mod af

- 16 -

(2.10)

B = 0 corresponds to a non-dissipative, central differ-

(2.11a)

(2.11b)

(2.11¢)



(df/~32)"*) = min mod [ay;%bdf;%,bd;’_zl (2.11d)
(df;%)"o) = min mod [df/':‘?,bcy;’_il (2.11e)
(a}‘;‘_;f)"'*) = min mod [‘#;:%,bd;?] (2.11f)

In the above, the operator "min mod” of three quantities is defined through
min mod [x,y,z] = min mod [min mod [x,y],Z], (2.12)

This is easily seen to be independent of the order of x,y,z. Again, b is a "compression” parame-

ter. Here it is chosen in the range.

1<b=3+128 (2.13)
The non-TVD or unlimited forms of these schemes are obtained by replacing each (df)v)

term Dy its corresponding unlimited df value. The third order truncation error of the unlimited
form coincides with the dissipation and is proportional to 8. See the proof of Theorem (3.1)
below.

For B = V12, this scheme (2.10),(2.11) coincides with (2.3),(2.4) for a = 1/6. The limit-
ing simplifies a bit here, since the coefficients of (2.11c) and (2.11d) vanish. For this reason, we
prefer this scheme to any of the other third order "B"” schemes.

Finally, we compute the CFL number guaranteeing that (2.8),(2.10),(2.11) is TVD. The
results are:

(2.14a) (for general B satisfying (2.13)

P

YRS S O BT 7 -
—— ————————————— — -+ — -
rela v ST A S T

.17.



(2.14b) (for b =3 + 128 = b_,)

.18 -



II. General 2m-1 and 2m-2 Order Accurate TVD Schemes

Which Use a 2m+1 Point Module for m < 8.

We use the notation of the previous section to approximate (1.1) via a family of schemes of

the type (2.2) where:

m=1
¢ = o= m 2m-2 (k)
f,;? = f/”'j_ = h(g.. q) + ,,..Emﬂ(“" + (-1)B +m-1)] [ajf;h-?] (3.1)
< 2 br-cos(E)) e, )0

Here m is aninteger, m = 2, and B satisfies 0 < B< (’"(‘:""')]-1. (The upper bound on B
could be relaxed considerably, at a cost of complicating our calculations. We shall not do this

here.) The binomial coefficient is defined for A,B integers with 0 < 8 < A, as usual:

(';) = B.’(: ia).'

The coeffidents v],u] can be defined recursively by:

v, = (-1)m*1(m(2,;,"])'1 for m=2. (3.2a)
vy = -;- (3.2b)
ve= —vm, k= 1,..,m=1 (3.2)
and
vpmt = v, +(- D (D (2mr2)) 7 f ) for k=12, ..., m-1.  (3.2d)

.19 -



An alternative direct formulation comes by defining:

m=—1
v’k" = /zer = -v’:k fO’ k = 19’-‘1"'—1’

where

and

o= com R ()

j-k+l

mae 4
P'O‘-E'

We define the flux limited quantities as follows. For each j:

,
(k
& )=minmod(a}".,bajf‘ bl pera| forall k with 0% k # 1.
"% ] | /r3 IS
lo .

ayj—‘; = min mod ﬂ;ybdfj_vm

2 2
[ o . [
Yoy| Tminmed & b,

2 ] 2 2
[ |w [ N
dj;‘;E = min mod a)‘;_.?,bdf;*_h%,bd;’_k_%] forall X with 0 # &k # -1,
[ lo
| = minmod o

2 2 2

(3.3a)

(3.3b)

(3.3¢)

(3.4a)

(3.4b)

(3.5a)

(3.5b)

(3.50)

(3.5d)

(3.5e)



[df ;](_U = min mod [a}"‘ ' bdfr ;] (3.50
2 2

- /-4-% I+
The compression parameter b is allowed to vary between:

0<b< er 2j+1]-1(1 +28 m:lz)] (3.6)

We can now state the following:

Theorem (3.1) ( beta schemes)

The scheme (2.2), (3.1)-(3.6) has the follcwing properties:

(a) Itis TVD and satisfies the maximum prindple.

(b) Forany B0<pB = (m(z;])'l’ and m <7, b can be taken to be greater than one. For
m = 8, there exists B, such that for 0 < B, < 8 = (8(3%)) ™, 5 can be again taken to be
greater than one.

(c) The unlimited version is (2m—1)—order accurate and 2m—order dissipative, with truncation
error and dissipation both proportional to 8. Thus, for 5 > 1, the TVD scheme will return

(2m=1)~order accuracy except at citical points, or points of discontinuity, where it is formally

only first-order accurate.

(d) The simple Euler forward difference time discretized version (2.8) is TVD if the CFL restric-

tion:

2 56

.21 -



-8 (m-i) - 83

m -1
’ /?2 -27511—-1')' *B m-_zz)]‘
is valid.
(¢) This same forward difference time-discretized scheme, without flux limiters, is linearly
unstable for any CFL number.
This theorem will be proven in the next section.
These beta schemes give one more order of accuracy per 2m+1 module than the alpha
—schemes defined next, except for a spedal case a = 28 = Z(m e’n"))-l when they coindde.
Again using the notation of the previous section, we approximate (1.1) via a family of

schemes of the type (2.2), where

I+

[ e ]

m=1
e =hga) + 2 Z[P'T-l“' (-1)ta 2.:.",,,-32] [#_h_‘i_]m 3.7

/+? k®»=m+

. miz vpmim(=1)a [1:3"[31)] [ - -+.1.]m
2

k= —m+] Tk

Here m is an integer with m 22, and 0 < a < ((m=1)(*"=2))"”. (Again, we impose

m-—

1

the upper bound on a for simplicity only.) The coeffidents v]*"*,u""! were defined in

(3.2),(3.3),(3.4), and we also define

m-1l 0= l&,’::;’ (38)

Veomst
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The flux limited quantities are defined precisely as in (3.5), and now the quantity b is allowed to

vary between

1+ 2a m——13)

2a(2m3) + :gjz @j-1

0<b=s

(3.9)

(where the sum E (2j-1)"% = 0, by definition.)
/=2

We can now state the following:

Theorem 3.2 ("a" schemes).

The scheme defined via (2.2), (3.7) has the following properties

(a) Itis TVD

(b) If m < 8, then b can be taken to be greater than one.

(© If a=2m(2")", then this scheme is identical to the "8" scheme for the same m,
. -1 . .. . .

with B = Um [7;:‘] . Hence its unlimited version is 2m—1-order accurate.

(d) For all other admissible values of a, the unlimited version of the scheme is

2m—2 order accurate with 2m order dissipation, which is proportional to «. The trunca-

tion error is equal to

TE = (~1)"[a - ¥m &,“)"](Ax)h-z[ﬁ]wf(u),

and is thus independent of the choice of h, the E flux.

(¢) The simple Euler forward difference time discretized version, (2.8), is TVD if the CFL res-

triction:



o = .
Ac| 3 7y s[l.p.b[l_mil;
a 2 & 2iQ2j-1)

1m—2 1 -3
- = —_— -
. 2/-1 2j-1 * m—Z)]

- m-1 -1
+«(23)+ 2 5m

/=2

(f) This same forward difference time discretized scheme, without flux limiters, is linearly

unstable for any CFL number.

This theorem will be proven in the next section.



IV. Proof of Main Theorems

Let the k* power of the shift operator be defined as

Sk‘l/ = Qe

Define the central difference operator for k=1,2,...

D,(kAx) = ﬁ(s“ - 57¢) 4.1)

We shall use the following well-known formula - see e.g. [14]. Let ¢ be any smooth func-
tion with ¢, = ¢(jAx) = ¢(x). Then

a(s) = -2 $ A (asjoe) (42)

2m+1
+ (-1 AR (azyom [%] 9x) + O((Ax)!

Let C¥" denote the operator from which uniquely defines 2m* order accurate differencing

based on central difference operators using a module (=m,m). We define

¢ = =23 (-1 2",) (") b, (kax) (4.3a)

k=1

m—1
= S AD.S

k=—m

where

Al = 5”.". )(-l)f*‘(,,,zf‘k](j(?,,"]]"‘ (4.3b)

Jmmax(—k,k+1

For our purposes, a better fcrmulation is



m—1

Cm=pD.5'+ T vD.(A.SFY)

ks —m+1
with
m=1
v = EX}", k=1,....m-1
J=k
vy = %
vw==vik=-1..,-m+1

It is fairly simple to verify (4.3) and (4.4).

Next we recognize that (4.2) implies that the operator

o2+ (=112 (m(2%) " (axyrm-pr-i0m,

(4.4a)

(4.4b)

(4.4c)

(4.4d)

(4.5)

is a 2m—1 order approximation to i—, with stendl (=(m=1),m). Moreover, the same is true

ax

for the operator
C¥ ~ \™_,(Ax)**~DmD" =

= ¢ = (=1 (m(27)) "' (ax)* D707

This operator is easily shown to be unique. Thus, we have the important result:

Cim = Cm-2 4 (-1)""1[m[z:]]'l(u)%'zm‘lm(z + AxD.)

This translates to (using (4.4))

m=1 m=2

3 v;"A*(A¢S“’~)= b v;"‘iA,,[AJ""‘]

km—m=1 km—m=~2

.26 -

(4.6)

4.7

(4.8)



m=2

+ 2 20) o (e e (o)

kml-m

m—1

+ k_il',_m(M(z,:,”])_I(-l)* zf{_zl)m (A-sk-‘-]
which irmplies
vp =+ (=04 m(Z)) T (202 ) (4.9)

for k=1,...,m—1. Thus we have proven (3.2) (again defining v7 = 0.)
It is now easy to see that

(=DwF >0, for k=1,....m—1. (4.10)
Next we apply the identity (4.8) to the grid function defined by:

1-(-1

q} = 2 = -q-j for jZ 0. (4-11)
This leads us to the useful result:
m—1 m=2 1
> (=Dpr =3 (=Dwpt + 7(2’"_1)' m=2.3,... (4.12)
=1 k=1
thus
T (-vp= i3l m=23 (4.13)
L=t S~ YIRS Vi ’

(The fact that the series above diverges as m -« explains why b, -0 as m - ®.)

We may rewrite:

m=1
c"=D.+ 3 uD.(a.5) (4.14a)

kw=m+1

This, together with (4.4a) gives us the identities:

(4.14b)

¥
o3
B
|
-

.27 -



wr= vk #O0. (4.14c)

Next, we claim that we can rewrite:

m=1
Cflg) = 3747, + S wiD. [df;k ;] (4.15)
1 m=1
+ — m .
Ax#;:% * k-?;,,ﬂv‘D‘ dmk-g

We verify this by rewriting the right side above as:

m=1

D.h(gp9-1) + X v[D.(A_f(g)

ks —m+!
kw(Q

+ 2. [-hgp-) + flgy-)

+ flg) - h(‘?j"];-i)]

= Dy(Ax)f(q) + 2 viD.(A_f(g)))

km=m+1
kwmQ

= D.S"Y(q) + Z VED.(8-f(g)) = C*"f(g)

k®=m+]
We have thus rewritten the 2mzh order, nondissipative approximation, C*", in terms of an
arbitrary E flux, in a form convenient for the purpose of making it TVD.

Next we note that the approximation to



q = 0
of the form:

a

=4 = (-1)"'B(Ax)""'DID7, (4.16)

=8 'S (022D, (A5,

kml-m

is dissipative of order 2m, and accurate of order 2m-1. Its Fourier transform is easily seen to

satisfy

—a- ] = —L - ml5
24(0) = ~2-(2-2 cos({ A1)"lQ) (4.17)
Thus, for an arbitrary E flux, we may write a 2m—1 order scheme, with 2m—order dissi-

pation, approximating (1.1) as:

54 = ~C¥flg) + (=)™ B(Ax) DD ~df ] (4.18)
2 2
d;:'é m-1
= -|= k--m+1[“’ + (-1 2m. 1]]0*[41;%_._2_]
L
+ Ax- +g-§,.+1 vm-(-l)“ﬁ(m k-l)] —(477;“ 1)

Thus, we have constructed the unlimited version of the numerical flux, f“/" 3_ , of (3.1), hav-

ing the relevant desired properties.
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For convenience, we require

B(2"2) = lugl = bopl foreach k=0 21+ —(m=1)

We claim that this is true for all k, if it is true for k = m-=1, orif

Bs (M) = bl

(4.19)

(4.20)

We shall prove this using induction and (4.9). The result is obviously always valid for k = m—1.

Suppose (4.19) is valid for all k| < m—1 and all numbers up to m. Then we have, from (4.9)

(~pvp=i= (e (2 ) (2
= -omp - ()7 (22
- (BB o )+ @) (522

- e () ()

We shall show that the last expression in brackets above is always positive.

For k = 0, we have:

11
T@m=1) 2@n+D) 0
For k = 1, we have:
1 + m-—1 + -m
WAm+)@m=1) = 2m@2m-1) = 2(m+1)(2m+1)
> (m—-1) 1 1 >0

2m 2m=1)  2(m+1)(@m-1)

.30 -

(4.21)



For k = 2, we have:

1 (m=1)...(m~k) 1 m[’Zm-l] 41— —m2m=1)
2m 2m-1) (m+k-1) - - - (m+1) (m*-k3) 2m+1 (ml-kz)(z_m.q-])

1 _(m=1)..(m—k) [ 2 +[2m-1] k J>0
(?m)(Zm 1) (m+k=1)...(m+1) | 2m+1 2m+1 ] (m+k)
The claim is now proven.

Next we apply the flux limiter to (4.18), arriving at the scheme (2.2), (3.1)- (3.6). To verify

that it decreases variation, we rewrite it as Equation (4.22):

(k) (k)
a1 [df— 1] [df- _:]
aq I+5 m=1 Pad Jre-2
—L= — - m - -
=00+ 5 b ecomlzgy)

Iy )= o)
- D_g, [A-q;] 1+ 3 ( -8 (22)) *

= C/‘%D,qj - D]—%D—ql
ThisisTVDmdsatisfiuamaximumprindpleif, for each j:

(4.23)

2
[T
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See e.g. [21].

Thus, we need:
l["?;k-a](k) _ ldf/q-';]m]
m=1 . Im=2 rl 2
L= k--zmﬂ(“k + (=18 [lﬂ+k-1)) af/;; (4.24a)
o) - )]
mo(_ 2m=-2 2 2
o k--znn-l[vk (=18 "'k‘l]] a_‘f;’_i 20
2

In (4.24b), we estimate the right side, using definition (3.5a, b, c), and recalling that the

sign of the ksh coeffidentis (=1)¢ if k =20, (—1)*"! if k < 0. Thus we need:
l_ -2 m=1 _ m—_ Im=2
12 3-8 (277 + 2 (GEYa% B(,Zm2))s (4.25)

+ 2 (o))

km=—m+!

% + B[Z’I"H:IZ) 2 2{:@;(—1)"1!2"]!7. (4.26)

or (using (4.13)):

yo 12 B0) 1) ) o

which implies D;-1 =0.
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A similar argument shows that C/+ 1 20 for the same values of 5.

Ll |

A simple exercise on a pocket calculator shows us that

};—- = 9551 ) ‘ (4.28a)
J=2 2 -1
2o
/-"ﬁ = 1.0218 (4.28b)
& 1
= 1.0809 4.28¢
P ry | (4.28¢)
It is possible to choose B =< (8(186])' sothat b =1 because % > .0218. If it were
possible to do this for m = 9, we would have 31-7- > .0809, which is false.

Thus, within our constraints, 15¢th order accuracy (in 17 points) is the highest possible.

Next, we obtain the CFL restriction for the explicit forward-Euler time discretization, which

we wriie as
A+l A n
q ‘4/ Ax C A+¢I/ =D - LA-q/J (4.29)
The precise restriction for the scheme to be TVD, in addition to (4.23) is, for each j:

ﬁ[ " e 1151 @.30)

(see [13))

We thus wish to obtain upper bounds for

1+ m):_"‘ (wr+-1yp 2m- 21]) . ‘ i (4.31a)

km—m=

.33.



and

m—1 [[d;h-’-]m - [dj;u'a](k)]
1+ 3 [r--u8(2m2)) - - (4.31)

km—m+1

A routine calculation using the definitions (3.5), noting the signs of the coefficients, gives us

the result (d) in Theorem (3.1), modulo proving that

“l 1
2 750-) , m=22, (4.32)

vl = -

For m = 2, (3.2a) gives:

2= [HMAN P2 L
vi (2 [2)] T 12
Assume that (4.32) is valid up to m. Then, (4.9) for k = 1, gives us

mel — - _1_ -2 -1 2m 1
v ¢ il M+1) +1];

I W 1
£2i2j=1) T 2m+)@2m+1)-1)

Finally, we check the stability of these linearized “B" schemes, without flux limiters, using
explicit forward Euler time discretization. We linearize about a constant state g, at which
f(@ =a=#0.

This is:

4 -q

At == szd‘?jn +(_1)m-1% (ho(q_’ )] -h:(q—, ﬂ)(A*A-)"'Q}'] (4.33)

We note that A is an E flux. In [19] it was shown for such fluxes that:



ha(q-! ‘7) = 0 = hl(‘?y a
If equality holds for both above, then consistency implies

°="a(5’47)+h1(5,4-)=f(®=0*0~

which is a contradiction. Thus we may define the positive quantity

B =P 9 -rE >0

The amplification matrix for (4.33) is

Arc
for —ws{<m C(0)#0, and C({) real analytic for real {. Then the relation:
). _ 24
WQPF=1+a [1—;] ¢ - LB+ 0 s 1
which implies:
21 At am=2 2m-1
la IE- s 28I + 0> 1) as |{]+0.

This is a contradiction, since m = 2.

Theorem (3.1) is now proven.

(4.34)

(4.35)

To construct the "a" schemes of Theorem (3.2) we first construct a dissipative approxima-

tionto ¢, = 0:

a , .
?"tf- = (-1)"a ATIA"D_g,, for a >0

.35.
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The operator on the right above has module (-m,m-1), and its symbol is:

a(=1)" 2™1(cos {=1)™}(1~e" 1) (4.37)

=a2" ! [=(1=cosl)"—i(1~cos{)™" *sin{]
Thus, this operator is dissipative of order 2m and accurate of order 2m—2. It may be

rewritten as:

dgg ™2 i 2m-3 -
at —ak--zmﬂ(-l) +m-1]D*‘(A"Sk %) (4.38)

Similarly, the operator on the right side of

d
'::L = (-1)"1eATATD.g,  Jfor o >0, (4.39)

has module (-=m+1,m), and its symbol is:

a2"" =~ (1-cos)™ + i(1—cos{)™ 'sin{] (4.40)

It is again dissipative of order 2m, is 2m—2 order accurate, and it may be rewritten as:

aq m=1 _ )
- = -1y 2m-3 -1
at ak--zmz( D "'M—Z]D*(A‘S 9)- (4.41)

Thus, we may use (4.15), (replacing m by m—1), (4.38) and (4.41) to obtain the unlimited

"a" scheme.

L = ~Cof(g) + (~1)a(ax)*2 DT D7D (g g | (4.4)

m=:

== ?‘l;df/__ + 2 [HT_: +(-1)a 2.;"":.}2]10‘[#* 1]

3 kem=-me2 Jmk=-=
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1
v/

km—m+1 k=

m=2
© 3 P -cewa(@m)o. o

1]

Using (4.2), we see that the leading term of the truncation error of the right side of (4.42) is:

L
2

(Y

TE = (-1)" [a - 21'”(-—2}");141](Ax)2’”'20?"“f(q), (4.43)

which is independent of the choice of the E flux, k(g;.,,q,)-
From (4.07), it is clear that a and B schemes coincide if a = -2-[2'")'1, and
m\m
-1
= Ll|2m
o= 2]

For convenience, we want (for m = 2):

a(, 23] = Jupr = byl b = 0,1,... m=2. (4.44)

We claim that this is valid for all these k if it is valid for k = m~2, or if
-_ -1
as ((m-1(>72)) (4.45)

This is trivial for m=2. For m > 2, this reduces to showing that:

(m(zr'n")]-l 2:_’:"__11] s o, E=01,.,m-1 (4.46)

We obtained a stronger inequality in (4.19), (4.20), so the validity of (4.44) from (4.45) is obvi-

Ous.

Next we apply the flux limiters to (4.42), arriving at the scheme. (2.2), (3.7). To verify

that the scheme decreases variation, we rewrite it as Equation (4.47):

.37.



(k) (k)
aq, et | s [“’Fh%] - ["’L—’f]
=D =11+ rl4(=1) s
at +4 A.q k--2m+2(“k (-1fa "‘k"l]) dj;‘-
( (k) (k)
‘#*1 & 1 - |4 L
-+ m=2 am—3 Jress o3
- + m=1 _f__1\k - < -
P-4 A_q ! k-—zml(vk (e +k-1]) ajf;‘_l
2
]
= 1 - - D ’ -
Cj*?D q /_?D q
We must show that (4.23) is valid for this scheme. Thus we need:
( k) )
1 3 df/-'»k-% T ek
m=1 -1)k - -
1= &__};M(uk +(=Dta(Z3))) 7 (4.433)
2

”

m—=2
l= Tt —(-pha(2m-3)

2 2 (4.48b)

In (4.48b), we estimate the right side, using the definition of v from (4.4b), (4.4¢), and
(4.4d). We recall that the krk coefficient has sign (—1)¢ if k = 0, (=1}~ if k < 0. Thus we
need:

.38 -




l= [%—a m_‘f]]

(4.49)
m=2
+ -1 kvm—l_a 2n=-3 b
El (( i +k—1))
+ 5 _'i krtym=14  2m=3 b
k--zm*l [( ) ‘ . +k—2)) .
or,
i -3 o m— -3
s+ ae‘"_l] = 2[k§1(-1)kvk l]b + a2 )b (4.50)
Using (4.13) gives us:
-3
1+ 2a
= m-i) 3 (4.51)
Ez [2}:—1] +2a m—2)

The same inequality establiches (4.48a).

Using(4.28),wesecthatwemntake b>1 for m <3, but not for m = 9. Thus 14z
= 2 -
order (or 15tk for a = m(zn"”]

.

) in17 points, is the best possible, as predicted.

Next we obtain the CFL restriction for the explidt time discretization (4.29), which requires

inequality (4.30). This time it involves obtaining upper bounds for:

(k) (k)
[~ ...
b+ 2 (bt v 2n3))

- (4.52a)
im +k-2 &
/"‘5’
and:
(k) th)
m—2 Im=3 Jrk+ s - dy;:k_?
”k.;;,-l("f'-"(‘”k“ 1) = (4.525)
1
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A routine calculation using the definitions in (3.5) and (4.32), and the signs of each coeffi-
cient, gives us result (e) in the statement of Theorem (3.2).

thlly, we check the stability of these linearized "a" schemes. We again linearize about a
constant state g, at which f'(q) = a # o. The resulting scheme is as follows in Equation

(4.53):

g -q
At

We also know that:

= - [c#%a ¢ + (-1 ta(ar)™2Dr D7D [h:G.D)q) + HGD- ]

h(q.9) = 0 = hy(3,9)
with at least one of these inequalities being strict.

The amplification matrix for (4.53) is:

1= 2L aiff + c@) ] (4.59)

- % a 2™ (1=cos )™ [h,(q,q)[1—cos { +i sin {]

—-h,0g,q)[1—cos { =i sin {]]
The rest of the proof goes as in (4.35).

Theorem (3.2) is now proven.



V. A More General Class of TVD Schemes

Given a conservation form approximation to the scalar version of (1.1) of the type:

2 "3
where
For = h@n - qfiet)
2
Suppose we can rewrite
k-1
Rimhie-Taean 62
2 2 ve =k
subject to the following restrictions for each j:
Af“' 202 A‘ 4 (5.3a)
T *3
A/‘:*.}) 2 Aj(:)l Jor —k+lsvsik-1, v#0 (5.3b)
2 2
1= [Aj‘g) - A‘O)I] (the CFL restriction) (5.3¢)
2 T3
Then we have the following:

Theorem (5.1)

Given an approximation to (1.1), of tk> form (5.1), satisfying (5.2),(5.3), then the scheme is

TVD, i.e

> a.gTis ? A.q7l
J
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Proof:

Using a, by now, standard argument -¢.g. [1], [13] and [28), we first compute:

(54) A.g™ =MALD Agh, ~NACY Ag,
2 . 2

+ [1 + x[A,‘Ili - “f?;]] Ag

2 2

k-1
+\ 3 -A/‘:’L +Aj(:“3_1)] A.q,
= S

Inequalities (5.3a, b, and c ) were chosen so that each coefficient of A.q},, in(5.4) is non-

negative. Thus we may take the absolute value of both sides, obtaining the inequality:

(55 18,4771 = 18ugfl + A A% [A.qy [N ACH lAsqr, |
2 2

k-1
x5 [ ) g
2 2

va =i+l

v -

k-1
= |A.q]| + NAL EkA,(:)LIA*qf”I
2
We sum the inequality (5.5) over j, the result follows.

Next we approximate (1.1) via a semi-discrete method (2.2), where

k-1

(5.6) i/ =-3 AY, A.q,,
2

Here the A}“;)L satisfy (5.3a and b). Then we have the following:
2
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Theorem (5.2)

Given an approximation to (1.1) of the form (2.2), satisfying (5.6) and (5.3a and b), then
the scheme is TVD, i.e.:

A

Proof

We follow an idea of Sanders [25], used by us in [21]. Let

X, () = sgn B.q

(S]]

2a.q (5.7)

a =
o 18+4/1 = X)L

= A(k-31) X 1 A“'q/+k -Aj(':g x/¢.£_ A*qj°k
2 2

*3 /*?

k=1 )
+ 2 "A(V 1
ve—i+] /*3
v

(v—=1
+A/*%)] X+t 8.+qsey

—-A(0 -1
+ 1A+q,|[ 40, AL %)]

Because of (5.3a and b), all the coefficients of xh; A.q;., for v # 0, are non-negative.
2

Thus, we have

P k-1
—87 IA-Qj{ s 2

g S

-AMI +A“"~,“)
Thsk < I*5

'A‘Q}-»vl (58)
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'*'A/(i-a__") 1A.qp.l "A/(:ﬁ 1A.q-.]
2 2

k=1

=A.3 A

v
va—i I

1 |A+¢7/+u'
2

Summing this inequality gives us Theorem (5.2).
We hope that this very general approach to the construction of TVD schemes will lead to an

even wider class of useful high order accurate methods. We shall discuss this in a future paper.



VI. Extensions to Hyperbolic Systems of Conservation Laws

We shall approximate such a system (1.1), using the scalar TVD approximations developed
in sections I and Ill. The key tool in this construction is the use of a nonlinear field-by-fisld
decomposition, which effectively decouples the system. Several such decompositions exist -
Godunov'’s (9], Osher’s [22], and Roe's [23]. For simplicty of exposition, we shall only use the
last here.

Although the formal version of the last method is well known to violate the entropy condi-
tion -i.e. to have stable expansion shocks, it is possible to remove this difficulty, 2.g. [19], by
changing the differencing slightly near sonic points - points where \,(¢q) = 0 for some eigenvalue
k. What we shall do here can be viewed as an extension of some of the work in [13] and [21] to
higher order, non-oscillatory methods. For simplicity of exposition only, we shall ignore the
entropy difficulty.
satisfying the equality:

Given two states q,,g,,,, Roe [23] defines a matrix A/¢ .

Y
-

Agyey) — flg) = 4/+;(9/+1"I/) (6.1)
2

This matrix is supposed to depend continuously on g,,g;.., to have only real eigenvalues,
and to satisfy
lim
A =4
Ye1=y J+% f(a)
Such a matrix exists if a convex entropy exists for the system [11]. See [23],(24] for some
spedial properties of physical systems.

Let the eigenvalues of A/_ be denoted by x}f{).;, p = 1,...,n. The corresponding left

-

[N]

eigenvectors are l/l{.‘,_ , and right eigenvectors are r/‘P,‘I , normalized so that
7 TT
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e r P=gq

/"‘?
=0ifp$q

Then we may write

Y1 = q = 2 “(p' ’/
=l

() 'r

f(qj-ﬂ) -f(q/) = E A(J’) a®), p),

pel ITT Ty %

&

Let

X7 = max (x,0)

b 4

min (x,0)

Next we define Roe’s first order numericaj flux:

h(gy.,q) = %(f(qm + £f(g)) -%IA# i (g1~gq))

n
=2 (\0),)- al), ré),
IS AL Ve

*
(™) |rA

. = E(WJ ) acn, re),
Jr= - s J+i
2 pml "7 3

Now we use the notation of section ITT to construct the high order non-

Systems of conservation laws. Let the quantities v, up,

(6.2a)

(6.2b)

(6.3)

(6.9)

(6.5a)

(6.5b)

oscillatory scheme for
b,B8,and a, be defined as in those sec-

tions. The numerica] fluxes used to construct semi-discrete approximations of the form (1.7a) are

. 46 -



defined via:

(B schemes of 2m—1 order accuracy):

j;‘-ZT = f/":g = h(?/+1u4/) (6.6)
m=1
moc 2m=2 (e
+ k--zm-vl (“'k +( ‘g [k+m-l)] [dfihé_]

m=1

+ 3 (vi"‘(-l)"ﬂ enm__zl))(‘?;k,:}m

k--mvl 5
<

(a schemes of 2m—-2 o 2m-1 order accuracy)

f;*? "‘f;:_'a% = h(g+1.9)) (6.7)
£ M=l 1Yy [ 2m=3 (k)
+ k._zm’:[uk +(-1) a(k+m—2)) [dj;héJ
(= m=1 _( _1\kn [ 2m=3 ()
+ k.;;,.vl (vk (-1)ta +m-1)) [w;:k*;J

Now we define these vector valued flux limited quantities as follows:

(6.8a)

n
&) = i AP) )= o) @) “al) @) “al) P,
[zif;%] Pglmm mod [( /*%) aﬁ%, b(xj_h%) a/_h?, b(k/_k_%) a/-h%)]r/‘#,

for all k with 0#k=1q,

(4,19 = 3 min mod [02)= ot bP3)™ aly] rier, (6.8b)
2 p= 2 2 2 2 3

- 4
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(& .19 = Ermnmod [O‘(‘DJ )" ““’) b(\ﬁ’i)- “ﬁ)*;] "j(‘i); (6.8¢)

~% p=l 3 3 T 73
(6.8d)
(¢ )@ = Zrmnmod [(X‘P‘ )" a‘P‘ b(x(P‘ )T all AP )T al) L]
% e 2 Jmims e k-_ R e
forall k with 0 # k # -1
[a}f; Emm mod [(M"’ )” a‘P‘ b ()“«"‘ 1) a}U’J ] rU” (6.8e)
7 p=! 2
[z#; -t = zmmmod [(w )* aw.,b(w) )" a? ]r/u’)1 (6.81)
7 p=1 3 T 73

It is easily seen that each of the unlimited versions of these semi-discrete algorithms does

indeed have the desired accuracy, for general nonlinear systems of hyperbolic conservation laws.

In the speaal case of linear diagonalizable hyperbolic systems:

flgd=Ag=A q, foreachﬁ;

we have a great deal of theory. We may now use the aj‘{’; to help measure the variation.

Define

A.q)l = El Ia@ (6.9)
r= B

-

A scheme of this semi-discrete type is said to be TVD if

d
I ? |A.q| =0
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Also the ratio needed below is defined by its value on the right:

= suph?), | (6.10)
p/ 3

We now have;

Theorem (6.1)

All the results of Theorems (3.1) and (3.2) go over word for word to the corresponding

schemes for systems where the flux is defined by (6.4) to (6.8), and where f(g) = Ag = A/- .q.

o

No theory of this type is known for nonlinear systems. The entropy condition was proven
for bounded a.e. limits of a spedial second order TVD type approximation, using Osher’s flux-
decomposition in [21]. We find numerically that these schemes work quite well for compressible
inviscid gas dynamical flows at widely varying Mach numbers. See [5] for the results of several

numerical experiments.
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VII. Results of Numerical Experiments
We now discuss some numerical results. Some members of the new family of schemes were
programmed for a linear wave equation with a source term which drives the solution to a time-

asymptotic steady state.

q + q, — wcos(nx) = 0. (7.1)

The semi-discrete TVD spatial differencing was combined with a family of multi-stage time dif-
ferencing (which includes the simple one-stage scheme shown in Eq. (2.8)). The steady state

exact solution of Eq. 7.1 is given by

q(x) = sin(mx) (7.2)

The /, norm of the difference between the numerical and analytic steady-state solutions was com-
puted and is presented below in Table (7.1) for a first-order accurate TVD scheme, and for the

TVD and unlimited forms of some members of the new family of schemes.

We now discuss the results shown in Table (7.1). The last column entitled "global accuracy”
is the order of accuracy measured from the numerical results. The order of accuracy is first meas-
ured based on the 20 interval and 30 interval solutions. Then, it is measured bassd on the 30
interval and the 40 interval solutions. Lastly, it is measured based on the 20 interval and the 40
interval solutions. The average of these three values have been entered in the last column of
Table (7.1). The individual orders of accuracy (for every pair of intervals) is computed as follows:
let the /. norm of the error for J intervals be denoted by E,; then, the order of global

(corresponding to the overall solution) error, O, is given by

0. . = BE) ~ E;)
7027 im(J2) = ia(J1)

(7.3)
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where J1 and J2 denote the number of intervals in the pair of solutions being considered.

Many facts stand out clearly in an analysis of the results of the 5-point schemes. The TE of

the unlimited schemes is close to the theoretically derived values. The global accuracy of the TVD

schemes
{, norm of Error
Scheme | 20 intervals | 30 intervals | 40 intervals | Global Accuracy;
First-Order Accurate Monotone Upwind Scheme;
First-Order | 0.1496 | 01013 | 0.07662 |  (Ax)%%7;
Third-Order Scheme, a = 1/6,b = 4;
Unlimited 0.0024856 0.000744 0.0003162 (Ax)>97;
TVD Limited | 0.004212 0.001348 0.00076338 (Ax)?*2;
Fully Upwind Scheme, a = % b=2
Unlimited 0.019717 0.0089566 | 0.005091 (Ax)"%5;
TVD Limited | 0.017874 0.00784 0.004756 (Ax)-5;
Fromm'’s Scheme, a = _i.’ b=3;
Unlimited 0.005685 0.00239 0.0013221 (Ax)2-9;
TVD Limited | 0.00862 0.002773 0.001554 (Ax)243;
Low TE Second-Order Scheme, a = % b=S5
Unlimited 0.003125 0.001256 0.000681 (Ax)>19;
TVD Limited | 0.006767 0.0014528 | 0.001058 (Ax)%92;
TVD Central Difference Scheme, a =0 5>>];
Smoothed 0.0100006 0.0045107 | 0.002556 (Ax)-97;
TVD Limited | 0.02655 0.00559 0.0080886 (Ax)H275;
Unnamed Scheme, a = ?13-, b=57
Unlimited 0.01028809 | 0.004565 0.0025733 (Ax)2-%;
' TVD Limited | 0.0111646 0.0045198 | 0.00268 (Ax)*9;

Table (7.1) Error Computations for some of the New 2nd and 3rd Order TVD Schemes

shows some variation. In fact, the global accuracy of the TVD schemes based on Fromm’s
discretization and the Low TE Second-Order discretization compare quite favorably with the global
accuracy of the Third-Order TVD scheme. In the case of the first two, the TVD scheme has
better accuracy than the corresponding unlimited scheme. In the case of the Third-Order scheme,

the accuracy suffers by going to the TVD form. When we consider the magnitude of error as
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opposed to the order of accuracy, the Third-Order scheme comes out ahead of all the others. The
global order of accuracy of a TVD scheme depends on a number of factors, such as the number of
maxima and minima, the ratio of this number to the overall number of intervals, implementation
of boundary conditions, etc. Thus, the global accuracy of the TVD and the unlimited forms can
be different. On the other hand, the fact that the Third-Order scheme is indeed third-order accu-
rate in its unlimited form and that it consistently has a lower magnitude of error seems to imply
that the Third-Order scheme may be the most preferable of the lot. The other second-order
schemes having a low truncation error also suggest themselves as schemes which must be given
serious consideration. We do not recommend the use of the unlimited forms of the TVD schemes
whether the order of accuracy of these is higher or lower than the corresponding TVD formula-
tion. The errors of the unlimited forms are shown here only for comparison. The TVD Central
scheme is also highly unreliable as shown by the fact that its error for 30 intervals was actually
better than the error of 40 intervals. This is due to the lack of dissipation. It has already been
mentioned that the orders of global accuracy given in the table are the average of three values. It
is quite instructive to actually look at the individual values that are averaged. Some schemes show
a wider variation than others. The last remark here is that the Fully Upwind scheme, that many
researchers (including the present authors) have been using in the recent past, is just about the
worst of the lot (excluding the highly unreliable TVD Central scheme). In fact, to obtain the
same level of accuracy as the 20 interval solution using the Third-Order scheme, the Fully Upwind
scheme would need to use 40 intervals. The purely centrally differenced scheme shown in Table
(7.1) as the Smoothed Central scheme (non-TVD central differencing along with a very small
amount of third-order fourth-difference smoothing) does not fare much better when compared
with the other third-order and second-order accurate schemes. The fifth order accurate, seven-

point scherne leads to the following resuits:
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!, norm of Error

Fifth Order, B = o= = By, b = 4

20 Intervals | 30 Intervals | 40 Intervals | 80 Intervals;
nnlimited .0000489 .00000662 | .000001181;
TVD limited .0148 .00142 .0014 .000168;
(TVD limited)* .0104 .00046 .00056;

Table (7.2) Error Computation for 5th Order TVD Scheme

Here the (TVD limited)* line denotes calculating the /., norm of the error computed only at
points where limiting does not occur - i.e., at which the scheme is of minimal order of accuracy.
This measures the effect of pollution into high-accuracy regions.

Next in Figures (7.1a-e) we test the compressive properties of various approximaticns. We
solve ¢, = —q, with an initial Heaviside function. The third-order accurate, Fromm’s, and the

low error second-order scheme appear to be extremely accurate - as accurate as the scheme
favored by Sweby in [26]. The fully upwind scheme has more smearing, while the first order

accurate upwind method smears the profile excessively.
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